王卓 1何琼 1,***孙树林 2,**周磊 1,*
作者单位
摘要
1 复旦大学物理学系,应用表面物理国家重点实验室,上海市超构表面光场调控重点实验室,上海 200433
2 复旦大学光科学与工程系上海超精密光学制造工程技术研究中心,上海 200433
从超构表面调控电磁波研究的发展历史出发,详细介绍了基于复合相位超构表面实现高效多功能调控圆偏振电磁波的原理、设计思路和实验模拟表征,对近期国内外在这一领域的研究进展进行简要的论述,着力以此引导相关研究性实验教学,并为相关领域研究人员提供指引。
超构表面 共振相位 传输相位 几何相位 复合相位 圆偏振光 多功能 
光学学报
2024, 44(10): 1026008
作者单位
摘要
浙江大学光电科学与工程学院,浙江 杭州 310027
铌酸锂晶体(LN)凭借优异的光学特性,已经成为构建新一代集成光电器件和光学系统的关键性基础材料。基于强场-物质相互作用的超快激光选择性材料修饰技术使得在三维空间中按需创建LN基功能化微结构成为可能,为探索LN光子学、发展LN先进加工技术、构建集成光子器件和光学系统提供了有力的工具。本文聚焦近年来国内外研究团队所取得的重要进展,从超快激光修饰LN基本原理出发,重点介绍了超快激光在LN内部诱导微纳光子结构的新现象、新机制和新应用,包括超快激光直写光波导、制备非线性光子晶体、操控铁电畴、多维光存储等前沿领域的最新成果。最后,对超快激光赋能LN光子学进行了展望。
超快激光 激光诱导 铌酸锂 光子结构 
激光与光电子学进展
2024, 61(1): 0116001
作者单位
摘要
电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
设计了一种双相位峰值电流模控制、具有大负载能力的降压稳压芯片。通过双相位的工作, 保证了芯片在重载下具有较高的效率。同时, 为了防止在轻载下两个相位的工作引入额外的开关损耗, 提出了一种轻载模式。通过利用电流模控制模式中电压环路内误差放大器产生的控制电压来检测实际负载的大小, 实现相位的切换以及在更低负载下的断续导通降频工作模式。基于035 μm BCD工艺进行仿真设计。仿真结果表明, 在输入电压12 V, 输出电压1 V, 开关频率500 kHz, 最大负载20 A下, 与传统单通道峰值电流模比较, 重载20 A下的效率可以提升3个百分点, 轻载05 A下的效率可以提升10个百分点。
开关电源 峰值电流模 双相控制 轻载模式 switching power supply peak current mode dual-phase control light load mode 
微电子学
2023, 53(4): 661
作者单位
摘要
电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
设计了一种带自适应电荷泵的超低功耗快速瞬态响应NMOS LDO,电路主要包含误差放大器、缓冲器、功率级、动态零点模块以及自适应电荷泵模块。该自适应电荷泵能够根据负载电流的大小调节工作频率,在兼顾大负载条件下功率管栅极需求的同时,保证了轻载下超低功耗的需求。同时为了满足电路中快速瞬态响应的需要,加入了动态电流电路。电路基于0.18 μm BCD工艺设计,其工作电压范围为2.5~3.6 V,输出电压为1.2 V,负载范围为10 μA~20 mA,工作的温度范围为-40~125 ℃。仿真结果显示,所设计的LDO供电电压调整率可达到1.123 mV/V,重载跳轻载时的恢复时间和轻载跳重载时的恢复时间分别为260 μs和5 μs,而静态电流最小仅为0.291 μA。
自适应电荷泵 超低功耗 adaptive charge pump NMOS LDO NMOS LDO ultra-low power 
微电子学
2023, 53(2): 189
作者单位
摘要
1 电子科技大学 电子薄膜与集成器件国家重点实验室, 成都 610054
2 电子科技大学 重庆微电子产业技术研究院, 重庆 401331
设计了一种基于全集成GaN工艺平台,具有抗负压、抗共模噪声的电平位移电路。相较于传统的电平位移电路,通过电路设计将驱动部分的低电压域同高侧部分电路的低电压域保持一致,实现了抗负压的功能。除此之外,针对半桥驱动开关节点的抬升、下降引起内部电容充放电并导致信号逻辑错误的问题,对高侧部分电路进行设计,实现了抗共模噪声的能力。在200 V GaN工艺下,电平位移电路将0~6 V的输入信号转换至200~206 V。仿真结果表明,该电平位移电路的上升传输延时为4.74 ns,下降传输延时为4.11 ns,抗开关节点负压为-4 V,具有100 V/ns共模噪声抑制能力。
全集成GaN电路 电平位移电路 抗负压 抗共模噪声 fully integrated GaN circuit level shifter negative rail compatibility common mode noise immunity 
微电子学
2023, 53(1): 55
Author Affiliations
Abstract
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University Hangzhou, China
2 Zhejiang Lab, Hangzhou, China
Inscribing functional micro-nano-structures in transparent dielectrics enables constructing all-inorganic photonic devices with excellent integration, robustness, and durability, but remains a great challenge for conventional fabrication techniques. Recently, ultrafast laser-induced self-organization engineering has emerged as a promising rapid prototyping platform that opens up facile and universal approaches for constructing various advanced nanophotonic elements and attracted tremendous attention all over the world. This paper summarizes the history and important milestones in the development of ultrafast laser-induced self-organized nanostructuring (ULSN) in transparent dielectrics and reviews recent research progresses by introducing newly reported physical phenomena, theoretical mechanisms/models, regulation techniques, and engineering applications, where representative works related to next-generation light manipulation, data storage, optical detecting are discussed in detail. This paper also presents an outlook on the challenges and future trends of ULSN, and important issues merit further exploration.
PhotoniX
2023, 4(1): 24
Xiaoying Zheng 1†Jing Lin 1,*†Zhuo Wang 1Haoyang Zhou 1[ ... ]Lei Zhou 1,2,3,***
Author Affiliations
Abstract
1 State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, 200433 Shanghai, People’s Republic of China
2 Academy for Engineering and Technology, Fudan University, 200433 Shanghai, People’s Republic of China
3 Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, People’s Republic of China
Freely switching light transmission and absorption via an achromatic reflectionless screen is highly desired for many photonic applications (e.g., energy-harvesting, cloaking, etc.), but available meta-devices often exhibit reflections out of their narrow working bands. Here, we rigorously demonstrate that an optical metasurface formed by two resonator arrays coupled vertically can be perfectly reflectionless at all frequencies below the first diffraction mode, when the near-field (NF) and far-field (FF) couplings between two constitutional resonators satisfy certain conditions. Tuning intrinsic loss of the system can further modulate the ratio between light transmission and absorption, yet keeping reflection diminished strictly. Designing/fabricating a series of metasurfaces with different inter-resonator configurations, we experimentally illustrate how varying inter-resonator NF and FF couplings can drive the system to transit between different phase regions in a generic phase diagram. In particular, we experimentally demonstrate that a realistic metasurface satisfying the discovered criteria exhibits the desired achromatic reflectionless property within 160–220 THz (0–225 THz in simulation), yet behaving as a perfect absorber at ~ 203 THz. Our findings pave the road to realize meta-devices exhibiting designable transmission/absorption spectra immune from reflections, which may find many applications in practice.
PhotoniX
2023, 4(1): 3
Author Affiliations
Abstract
Fudan University, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Department of Physics, State Key Laboratory of Surface Physics, Shanghai, China
Dynamically controlling terahertz (THz) waves with an ultracompact device is highly desired, but previously realized tunable devices are bulky in size and/or exhibit limited light-tuning functionalities. Here, we experimentally demonstrate dynamic modulation on THz waves with a dielectric metasurface in mode-selective or mode-unselective manners through pumping the system at different optical wavelengths. Quasi-normal-mode theory reveals that the physics is governed by the spatial overlap between wave functions of resonant modes and regions inside resonators perturbed by pump laser excitation at different wavelengths. We further design/fabricate a dielectric metasurface and experimentally demonstrate that it can dynamically control the polarization state of incident THz waves, dictated by the strength and wavelength of the pumping light. We finally numerically demonstrate pump wavelength-controlled optical information encryption based on a carefully designed dielectric metasurface. Our studies reveal that pump light wavelength can be a new external knob to dynamically control THz waves, which may inspire many tunable metadevices with diversified functionalities.
dynamic metasurfaces terahertz quasi-normal-mode theory optical pumping 
Advanced Photonics
2023, 5(2): 026005
Author Affiliations
Abstract
Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2×107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses. We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2×107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses. We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
ultrafast laser photoluminescence tailoring ultralong lifetime optical data storage 
Opto-Electronic Advances
2023, 6(1): 220008
Zhuo Wang 1†Yao Liang 2,3,5,*†Jiaqi Qu 4Mu Ku Chen 2,3[ ... ]Changyuan Yu 4,7,*
Author Affiliations
Abstract
1 Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
2 Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
3 State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, China
4 Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
5 e-mail: yaoliang@m.scnu.edu.cn
6 e-mail: dptsai@cityu.edu.hk
7 e-mail: changyuan.yu@polyu.edu.hk
Plasmonic resonances empowered by bound states in the continuum (BICs) offer unprecedented opportunities to tailor light–matter interaction. However, excitation of high quality-factor (Q-factor) quasi-BICs is often limited to collimated light at specific polarization and incident directions, rendering challenges for unpolarized focused light. The major hurdle is the lack of robustness against weak spatial coherence and poor polarization of incident light. Here, addressing this limitation, we demonstrate sharp resonances in symmetric plasmonic metasurfaces by exploiting BICs in the parameter space, offering ultraweak angular dispersion effect and polarization-independent performance. Specifically, a high-Q (71) resonance with near-perfect absorption (>90%) is obtained for the input of unpolarized focused light covering wide incident angles (from 0° to 30°). Also, giant electric and magnetic field enhancement simultaneously occurs in quasi-BICs. These results provide a way to achieve efficient near-field enhancement using focused light produced by high numerical aperture objectives.
Photonics Research
2023, 11(2): 260

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!